Back to search
Publication

Dapsone-induced hemolytic anemia.

Abstract

Dapsone, an old drug introduced and used almost exclusively for the treatment of leprosy, is now utilized in an increasing number of therapeutic situations. However, its hemotoxicity is potentially severe and is often dose limiting. Effective countermeasures, based on resolution of the mechanisms underlying dapsone-induced hemotoxicity, could significantly enhance the therapeutic value of the drug. In studies on rat red cells, we have established that the N-hydroxy metabolites of dapsone, DDS-NOH and MADDS-NOH, are direct-acting hemolytic agents, that they are formed in amounts sufficient to account for the hemotoxicity of the parent drug, and that the action of these toxic metabolites in the red cell induces premature sequestration by the spleen. Incubation of rat red cells with hemolytic concentrations of arylhydroxylamines leads to the generation of hydroxyl, glutathiyl, and hemoglobinthiyl radicals, and the formation of protein-glutathione mixed disulfides. Disulfide-linked adducts are also formed between membrane skeletal proteins and hemoglobin monomers, as well as between the monomeric hemoglobin units forming dimers, trimers, tetramers, and pentamers. Profound morphological changes are seen with change from normal discoidocity to an extreme nonspherocytic enchinocyte shape. Parallel studies with human red cells indicate that the response of human cells is qualitatively similar but that there are notable differences in regard to skeletal membrane effects. A working hypothesis for the mechanism underlying dapsone hemolytic activity is proposed.

More information

Type
Journal Article
Author
Jollow D J
Bradshaw T P
McMillan D C

More publications on: