Back to search
Publication

Contact-dependent demyelination by Mycobacterium leprae in the absence of immune cells.

Abstract

Demyelination results in severe disability in many neurodegenerative diseases and nervous system infections, and it is typically mediated by inflammatory responses. Mycobacterium leprae, the causative organism of leprosy, induced rapid demyelination by a contact-dependent mechanism in the absence of immune cells in an in vitro nerve tissue culture model and in Rag1-knockout (Rag1-/-) mice, which lack mature B and T lymphocytes. Myelinated Schwann cells were resistant to M. leprae invasion but undergo demyelination upon bacterial attachment, whereas nonmyelinated Schwann cells harbor intracellular M. leprae in large numbers. During M. leprae-induced demyelination, Schwann cells proliferate significantly both in vitro and in vivo and generate a more nonmyelinated phenotype, thereby securing the intracellular niche for M. leprae.

More information

Type
Journal Article
Author
Rambukkana A
Zanazzi G
Tapinos N
Salzer J

More publications on: