TY - JOUR KW - Anergy KW - dialyzable leukocytes extract KW - murine leprosy KW - sodium butyrate KW - valproic acid AU - Rojas-Espinosa O AU - Moreno-García S AU - Arce-Paredes P AU - Becerril-Villanueva E AU - Juarez-Ortega M AB -

Background: Murine leprosy is a chronic granulomatous disease caused by Mycobacterium lepraemurium (MLM) in mice and rats. The disease evolves with the development of cellular anergy that impedes the production of interferon gamma (IFNγ), tumor necrosis factor-alpha (TNFα), and nitric oxide (NO) required to kill the microorganism. In this study we investigated whether histone deacetylase inhibitors (HDACi) (valproic acid and sodium butyrate [NaB]) and the immunomodulator transfer factor in dialyzable leukocyte extracts (DLE) can prevent anergy in murine leprosy.

Methods: Five groups of six Balb/c mice were intraperitoneally inoculated with 2 × 107 MLM. Thirty-days post inoculation, treatment was started; one group received no treatment, one was treated with rifampicin-clofazimine (R-C), one with sodium valproate (VPA), one with NaB, and one with DLE. The animals were monitored for the evidence of disease for 96 days. After euthanasia, their spleens were removed and processed for histologic, bacteriologic, and cytokine studies.

Results: R-C completely controlled the ongoing disease. DLE and NaB significantly reduced the development of lesions, including granuloma size and the number of bacilli; VPA was less effective. DLE, NaB, and VPA reverted the anergic condition in diverse grades and allowed the expression of IFNγ, TNFα, and inducible NO synthase, also in diverse grades.

Conclusion: Anergy in leprosy and murine leprosy allows disease progression. In this study, anergy was prevented, in significant degree, by DLE (an immunomodulator) and NaB (HDACi). VPA was less effective. These results suggest potential beneficial effects of DLE and NaB in the ancillary treatment of leprosy.

BT - International journal of mycobacteriology C1 - https://www.ncbi.nlm.nih.gov/pubmed/32862159 DA - 01/2020 DO - 10.4103/ijmy.ijmy_31_20 IS - 3 J2 - Int J Mycobacteriol LA - eng N2 -

Background: Murine leprosy is a chronic granulomatous disease caused by Mycobacterium lepraemurium (MLM) in mice and rats. The disease evolves with the development of cellular anergy that impedes the production of interferon gamma (IFNγ), tumor necrosis factor-alpha (TNFα), and nitric oxide (NO) required to kill the microorganism. In this study we investigated whether histone deacetylase inhibitors (HDACi) (valproic acid and sodium butyrate [NaB]) and the immunomodulator transfer factor in dialyzable leukocyte extracts (DLE) can prevent anergy in murine leprosy.

Methods: Five groups of six Balb/c mice were intraperitoneally inoculated with 2 × 107 MLM. Thirty-days post inoculation, treatment was started; one group received no treatment, one was treated with rifampicin-clofazimine (R-C), one with sodium valproate (VPA), one with NaB, and one with DLE. The animals were monitored for the evidence of disease for 96 days. After euthanasia, their spleens were removed and processed for histologic, bacteriologic, and cytokine studies.

Results: R-C completely controlled the ongoing disease. DLE and NaB significantly reduced the development of lesions, including granuloma size and the number of bacilli; VPA was less effective. DLE, NaB, and VPA reverted the anergic condition in diverse grades and allowed the expression of IFNγ, TNFα, and inducible NO synthase, also in diverse grades.

Conclusion: Anergy in leprosy and murine leprosy allows disease progression. In this study, anergy was prevented, in significant degree, by DLE (an immunomodulator) and NaB (HDACi). VPA was less effective. These results suggest potential beneficial effects of DLE and NaB in the ancillary treatment of leprosy.

PY - 2020 SP - 268 EP - 273 T2 - International journal of mycobacteriology TI - Effect of dialyzable leukocyte extract, sodium butyrate, and valproic acid in the development of anergy in murine leprosy. UR - http://www.ijmyco.org/temp/IntJMycobacteriol93268-4482935_122709.pdf VL - 9 SN - 2212-554X ER -