TY - JOUR KW - 1-Methyl-4-phenylpyridinium KW - Alpha-Synuclein KW - Animals KW - Apoptosis KW - Cell Survival KW - Dopamine Plasma Membrane Transport Proteins KW - Dose-Response Relationship, Drug KW - Down-Regulation KW - Enzyme Inhibitors KW - Leprostatic Agents KW - Neurons KW - Neuroprotective Agents KW - PC12 Cells KW - Protein Conformation KW - Rats KW - Rifampin AU - Xu J AU - Wei C AU - Xu C AU - Bennett C AU - Zhang G AU - Li F AU - Tao E AB -

The potential cytoprotective effects of the anti-leprosy antibiotic rifampicin were investigated in rat pheochromocytoma (PC12) cells prior to intoxication with 1-Methyl-4-phenyl pyridinium (MPP(+)). MPP(+) induced both apoptotic and necrotic cell death, and increased the expression of a 57 kDa species of alpha-Synuclein. This species of alpha-Synuclein is larger than the monomer, and is therefore an oligomer or an aggregated form of the protein. Rifampicin significantly increased survival of these catecholaminergic cells in a concentration-dependent manner. The expression of the higher molecular mass alpha-Synuclein was increased by MPP(+) exposure, and its expression was inversely related to cell survival in the rifampicin-treated cells. Importantly, rifampicin suppressed apoptosis almost completely, without shifting the death cascade to necrosis, which is a problem that has been reported with caspase inhibitors of apoptosis (Hartmann, A., Troadec, J.D., Hunot, S., Kikly, K., Faucheux, B.A., Mouatt-Prigent, A., Ruberg, M. Agid, Y., Hirsch, E.C., 2001. Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson's disease, but pathway inhibition results in neuronal necrosis. J. Neurosci. 21, 2247-2255). These results suggest that rifampicin improves survival of catecholamine- and alpha-Synuclein-containing cells, which degenerate in Parkinson's disease (PD), and thus may be therapeutic in this disease.

BT - Brain research C1 - http://www.ncbi.nlm.nih.gov/pubmed/17280646?dopt=Abstract DA - 2007 Mar 30 DO - 10.1016/j.brainres.2006.12.074 J2 - Brain Res. LA - eng N2 -

The potential cytoprotective effects of the anti-leprosy antibiotic rifampicin were investigated in rat pheochromocytoma (PC12) cells prior to intoxication with 1-Methyl-4-phenyl pyridinium (MPP(+)). MPP(+) induced both apoptotic and necrotic cell death, and increased the expression of a 57 kDa species of alpha-Synuclein. This species of alpha-Synuclein is larger than the monomer, and is therefore an oligomer or an aggregated form of the protein. Rifampicin significantly increased survival of these catecholaminergic cells in a concentration-dependent manner. The expression of the higher molecular mass alpha-Synuclein was increased by MPP(+) exposure, and its expression was inversely related to cell survival in the rifampicin-treated cells. Importantly, rifampicin suppressed apoptosis almost completely, without shifting the death cascade to necrosis, which is a problem that has been reported with caspase inhibitors of apoptosis (Hartmann, A., Troadec, J.D., Hunot, S., Kikly, K., Faucheux, B.A., Mouatt-Prigent, A., Ruberg, M. Agid, Y., Hirsch, E.C., 2001. Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson's disease, but pathway inhibition results in neuronal necrosis. J. Neurosci. 21, 2247-2255). These results suggest that rifampicin improves survival of catecholamine- and alpha-Synuclein-containing cells, which degenerate in Parkinson's disease (PD), and thus may be therapeutic in this disease.

PY - 2007 SP - 220 EP - 5 T2 - Brain research TI - Rifampicin protects PC12 cells against MPP+-induced apoptosis and inhibits the expression of an alpha-Synuclein multimer. VL - 1139 SN - 0006-8993 ER -