TY - JOUR AU - Hooij A AU - Kon Fat ET AU - Eeden S AU - Wilson L AU - da Silva M AU - Salgado CG AU - Spencer JS AU - Corstjens P AU - Geluk A AB -

Early detection of leprosy is key to reduce the ongoing transmission. Antibodies directed against M. leprae PGL-I represent a useful biomarker for detecting multibacillary (MB) patients. Since efficient leprosy diagnosis requires field-friendly test conditions, we evaluated two rapid lateral flow assays (LFA) for detection of Mycobacterium leprae-specific antibodies: the visual immunogold OnSite Leprosy Ab Rapid test [Gold-LFA] and the quantitative, luminescent up-converting phosphor anti-PGL-I test [UCP-LFA]. Test performance was assessed in independent cohorts originating from three endemic areas. In the Philippine cohort comprising patients with high bacillary indices (BI; average:4,9), 94%(n = 161) of MB patients were identified by UCP-LFA and 78%(n = 133) by Gold-LFA. In the Bangladeshi cohort, including mainly MB patients with low BI (average:1), 41%(n = 14) and 44%(n = 15) were detected by UCP-LFA and Gold-LFA, respectively. In the third cohort of schoolchildren from a leprosy hyperendemic region in Brazil, both tests detected 28%(n = 17) seropositivity. Both rapid tests corresponded well with BI(p < 0.0001), with a fairly higher sensitivity obtained with the UCP-LFA assay. However, due to the spectral character of leprosy, additional, cellular biomarkers are required to detect patients with low BIs. Therefore, the UCP-LFA platform, which allows multiplexing with differential biomarkers, offers more cutting-edge potential for diagnosis across the whole leprosy spectrum.

BT - Scientific reports C1 -

http://www.ncbi.nlm.nih.gov/pubmed/28827673?dopt=Abstract

DO - 10.1038/s41598-017-07803-7 IS - 1 J2 - Sci Rep LA - eng N2 -

Early detection of leprosy is key to reduce the ongoing transmission. Antibodies directed against M. leprae PGL-I represent a useful biomarker for detecting multibacillary (MB) patients. Since efficient leprosy diagnosis requires field-friendly test conditions, we evaluated two rapid lateral flow assays (LFA) for detection of Mycobacterium leprae-specific antibodies: the visual immunogold OnSite Leprosy Ab Rapid test [Gold-LFA] and the quantitative, luminescent up-converting phosphor anti-PGL-I test [UCP-LFA]. Test performance was assessed in independent cohorts originating from three endemic areas. In the Philippine cohort comprising patients with high bacillary indices (BI; average:4,9), 94%(n = 161) of MB patients were identified by UCP-LFA and 78%(n = 133) by Gold-LFA. In the Bangladeshi cohort, including mainly MB patients with low BI (average:1), 41%(n = 14) and 44%(n = 15) were detected by UCP-LFA and Gold-LFA, respectively. In the third cohort of schoolchildren from a leprosy hyperendemic region in Brazil, both tests detected 28%(n = 17) seropositivity. Both rapid tests corresponded well with BI(p < 0.0001), with a fairly higher sensitivity obtained with the UCP-LFA assay. However, due to the spectral character of leprosy, additional, cellular biomarkers are required to detect patients with low BIs. Therefore, the UCP-LFA platform, which allows multiplexing with differential biomarkers, offers more cutting-edge potential for diagnosis across the whole leprosy spectrum.

PY - 2017 EP - 8868 T2 - Scientific reports TI - Field-friendly serological tests for determination of M. leprae-specific antibodies. UR - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566372/pdf/41598_2017_Article_7803.pdf VL - 7 SN - 2045-2322 ER -