TY - JOUR KW - Sub-Saharan Africa KW - Mycobacterium leprae KW - Multibacillary (MB) leprosy KW - Mathematical model KW - leprosy AU - Chiyaka E AU - Muyendesi T AU - Nyamugure P AU - Mutasa F AB -

Leprosy is a communicable disease which can cause hideous deformities to the afflicted and social stigmatization to them and their families. The continued high endemicity of leprosy in pockets of Sub-Saharan Africa is a source of bafflement to researchers. In this paper, we investigate non-compliant behavior by patients on treatment and possible inadequacy of the prescribed treatments as the reason for the persistence of the disease in the region. We construct theoretical, deterministic mathematical models of the transmission dynamics of leprosy. These models are modified to encapsulate non-compliance and inadequate treatment. The models are then analyzed to gain insight into the qualitative features of the equilibrium states, which enable us to determine the basic reproduction number. We also employ analytical and numerical techniques to investigate the impact of non-compliance and inadequate treatment on the transmission dynamics of the disease. Our results show that, as long as there is treatment, leprosy will eventually be eliminated from the region and that the disposition under investigation only serves to slow the rate at which the disease is eradicated.

BT - Applied Mathematics CN - CHIYAKA 2013 DO - 10.4236/am.2013.42059 IS - 4 LA - eng N2 -

Leprosy is a communicable disease which can cause hideous deformities to the afflicted and social stigmatization to them and their families. The continued high endemicity of leprosy in pockets of Sub-Saharan Africa is a source of bafflement to researchers. In this paper, we investigate non-compliant behavior by patients on treatment and possible inadequacy of the prescribed treatments as the reason for the persistence of the disease in the region. We construct theoretical, deterministic mathematical models of the transmission dynamics of leprosy. These models are modified to encapsulate non-compliance and inadequate treatment. The models are then analyzed to gain insight into the qualitative features of the equilibrium states, which enable us to determine the basic reproduction number. We also employ analytical and numerical techniques to investigate the impact of non-compliance and inadequate treatment on the transmission dynamics of the disease. Our results show that, as long as there is treatment, leprosy will eventually be eliminated from the region and that the disposition under investigation only serves to slow the rate at which the disease is eradicated.

PY - 2013 SP - 387 EP - 401 T2 - Applied Mathematics TI - Theoretical assessment of the transmission dynamics of leprosy UR - http://file.scirp.org/pdf/AM_2013022710430849.pdf ER -