TY - JOUR KW - Adaptation, Physiological KW - Bacterial Proteins KW - Biological Transport, Active KW - Carrier Proteins KW - Genes, Bacterial KW - Mycobacterium leprae KW - Mycobacterium tuberculosis KW - Sequence Analysis, Protein KW - Species Specificity AU - Youm J AU - Saier M AB -

The co-emergence of multidrug resistant pathogenic bacterial strains and the Human Immunodeficiency Virus pandemic has made tuberculosis a leading public health threat. The causative agent is Mycobacterium tuberculosis (Mtu), a facultative intracellular parasite. Mycobacterium leprae (Mle), a related organism that causes leprosy, is an obligate intracellular parasite. Given that different transporters are required for bacterial growth and persistence under a variety of growth conditions, we conducted comparative analyses of transport proteins encoded within the genomes of these two organisms. A minimal set of genes required for intracellular and extracellular life was identified. Drug efflux systems utilizing primary active transport mechanisms have been preferentially retained in Mle and still others preferentially lost. Transporters associated with environmental adaptation found in Mtu were mostly lost in Mle. These findings provide starting points for experimental studies that may elucidate the dependencies of pathogenesis on transport for these two pathogenic mycobacteria. They also lead to suggestions regarding transporters that function in intra- versus extra-cellular growth.

BT - Biochimica et biophysica acta C1 - http://www.ncbi.nlm.nih.gov/pubmed/22179038?dopt=Abstract C2 - The Netherlands CY - Amsterdam DA - 2012 Mar DO - 10.1016/j.bbamem.2011.11.015 IS - 3 J2 - Biochim. Biophys. Acta LA - eng N2 -

The co-emergence of multidrug resistant pathogenic bacterial strains and the Human Immunodeficiency Virus pandemic has made tuberculosis a leading public health threat. The causative agent is Mycobacterium tuberculosis (Mtu), a facultative intracellular parasite. Mycobacterium leprae (Mle), a related organism that causes leprosy, is an obligate intracellular parasite. Given that different transporters are required for bacterial growth and persistence under a variety of growth conditions, we conducted comparative analyses of transport proteins encoded within the genomes of these two organisms. A minimal set of genes required for intracellular and extracellular life was identified. Drug efflux systems utilizing primary active transport mechanisms have been preferentially retained in Mle and still others preferentially lost. Transporters associated with environmental adaptation found in Mtu were mostly lost in Mle. These findings provide starting points for experimental studies that may elucidate the dependencies of pathogenesis on transport for these two pathogenic mycobacteria. They also lead to suggestions regarding transporters that function in intra- versus extra-cellular growth.

PB - Elsevier Pub. Co. PP - Amsterdam PY - 2012 SP - 776 EP - 97 T2 - Biochimica et biophysica acta TI - Comparative analyses of transport proteins encoded within the genomes of Mycobacterium tuberculosis and Mycobacterium leprae. VL - 1818 SN - 0006-3002 ER -